VEGF and Notch in tip and stalk cell selection.

نویسندگان

  • Raquel Blanco
  • Holger Gerhardt
چکیده

Sprouting angiogenesis is a dynamic process in which endothelial cells collectively migrate, shape new lumenized tubes, make new connections, and remodel the nascent network into a hierarchically branched and functionally perfused vascular bed. Endothelial cells in the nascent sprout adopt two distinct cellular phenotypes--known as tip and stalk cells--with specialized functions and gene expression patterns. VEGF and Notch signaling engage in an intricate cross talk to balance tip and stalk cell formation and to regulate directed tip cell migration and stalk cell proliferation. In this article, we summarize the current knowledge and implications of the tip/stalk cell concepts and the quantitative and dynamic integration of VEGF and Notch signaling in tip and stalk cell selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation.

Angiogenic sprouting requires functional specialisation of endothelial cells into leading tip cells and following stalk cells. Experimental data illustrate that induction of the tip cell phenotype is dependent on the protein VEGF-A; however, the process of tip cell selection is not fully understood. Here we introduce a hierarchical agent-based model simulating a suggested feedback loop that lin...

متن کامل

Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades.

Gradients of vascular endothelial growth factor (VEGF) induce single endothelial cells to become leading tip cells of emerging angiogenic sprouts. Tip cells then suppress tip-cell features in adjacent stalk cells via Dll4/Notch-mediated lateral inhibition. We report here that Smad1/Smad5-mediated BMP signaling synergizes with Notch signaling during selection of tip and stalk cells. Endothelium-...

متن کامل

VEGFRs and Notch: a dynamic collaboration in vascular patterning.

ECs (endothelial cells) in the developing vasculature are heterogeneous in morphology, function and gene expression. Inter-endothelial signalling via Dll4 (Delta-like 4) and Notch has recently emerged as a key regulator of endothelial heterogeneity, controlling arterial cell specification and tip versus stalk cell selection. During sprouting angiogenesis, tip cell formation is the default respo...

متن کامل

Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis.

RATIONALE The formation of novel blood vessels is initiated by vascular endothelial growth factor. Subsequently, DLL4-Notch signaling controls the selection of tip cells, which guide new sprouts, and trailing stalk cells. Notch signaling in stalk cells is induced by DLL4 on the tip cells. Moreover, DLL4 and DLL1 are expressed in the stalk cell plexus to maintain Notch signaling. Notch loss-of-f...

متن کامل

Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis

Vascular abnormalities contribute to many diseases such as cancer and diabetic retinopathy. In angiogenesis new blood vessels, headed by a migrating tip cell, sprout from pre-existing vessels in response to signals, e.g., vascular endothelial growth factor (VEGF). Tip cells meet and fuse (anastomosis) to form blood-flow supporting loops. Tip cell selection is achieved by Dll4-Notch mediated lat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cold Spring Harbor perspectives in medicine

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2013